$\begin{array}{l} SULFURIC \ ACID.\\ H_2SO_4\end{array}$

The 3 Sources of Sulfur Dioxide

- Combustion of natural deposits of elemental sulfur
- Combination of sulfur recovered from natural gas and crude oil
- SO₂ formed during the smelting of sulfide ores of Cu, Zn & Pb

Frasch Process

- S is mined from underground deposits
- Takes advantage of sulfur's low MP and lack of reactivity with water
- Superheated liquid water (160°C) is pumped down a pipe to sulfur deposit, melting the sulfur
- Second pipe pumps air down to mixture of molten sulfur and water

Frasch Process

- A froth of liquid sulfur, air and water forms
- This froth is forced to the surface by a third pipe
- At surface, air escapes, water runs off and the sulfur is collected

Contact Process

• Elemental sulfur is burnt in air to form sulfur dioxide (Oxidation of S)

$$S_{(1)} + O_{2(g)} \longrightarrow SO_{2(g)}$$

 $? H = -297 k Jmol^{-1}$

- Reaction occurs at high temperature (about 1000°C) but normal atmospheric pressure
- Reaction is complete (no S at equilibrium)

- The very negative change in enthalpy for this reaction means it is very exothermic
- This means heat is generated so the heater needs to be cooled by water
- Achieved by running through pipes
- The steam produced is used in other parts of the plant

- Catalytic oxidation of Sulfur Dioxide $SO_{2(g)} + O_{2(g)} \implies 2SO_{3(g)}$ $? H = -191 k J mol^{-1}$
- An exothermic reaction
- Le Chatelier's principle indicates equilibrium position would move to right if temperature was lowered (more products)

- Increase Yield of SO₃
 - Decrease Temperature (exothermic reaction)
 - Increase Pressure (more molecules on LHS)
 - Excess Reactants are added
- Increase Rate of Reaction
 - Increase Temperature
 - Increase Pressure
 - Add Catalyst

- Lower temp also means lower rate
- Temperature used is $400^{\circ}C 500^{\circ}C$
- A catalyst is used to get a reasonable rate
- Best catalyst found to be Vanadium Pentoxide V_2O_5
- Reaction occurs at atmospheric pressure despite Le Chatelier principle, increased pressure did not increase yield significantly

- The converter is water cooled and heat is used in other processes
- A virtually complete reaction of SO₂ occurs under these condition

- Absorption of SO₃
- Sulfuric Acid is used to absorb the SO₃ as the reaction with water is very exothermic
- Product formed is OLEUM
- Water is slowly added to oleum to reform the sulfuric acid

 $SO_{3 (g)} + H_2SO_{4 (l)} \longrightarrow H_2S_2O_{7 (l)}$ $H_2S_2O_{7(l)} + H_2O_{(l)} \longrightarrow 2H_2SO_{4 (l)}$ Overall reaction $SO_{3 (g)} + H_2O_{(l)} \longrightarrow H_2SO_{7 (l)}$ $? H = -880 \text{kJmol}^{-1}$

- Both reactions are exothermic
- Le Chatelier's principle says if temperature is lowered, more products would be produced
- However the reaction is basically complete in the absorption tower
- Any extra production would not be enough to justify cost of cooling tower

Minimizing Emissions of SO₂

- Need to maximise conversion of SO_2 to SO_3
- Double Absorption method is used
- The gas is passed over the catalyst several times
- This increases conversion from 98% to >99.5%

Uses of Sulfuric Acid

- ³⁄₄ of H₂SO₄ produced in Australia is used to make superphosphate and other fertilizers
- Ammonium sulfate (NH₄)₂SO₄ and Ammonium phosphate (NH₄)₃PO₄ are 2 such fertilizers
- It's the most commonly used general purpose acid
- Used to clean metal surfaces by removing rust and other oxides before electroplating

Uses of Sulfuric Acid

- Used to prepare many other acids like hydrochloric and nitric
- Sulfonating agent used in manufacture of paper, dyes and drugs
- Manufacturing modern synthetic detergents, the alkylbezene sulfonates (biodegradable)
- Electrolyte in lead acid car batteries
- Used in petroleum refining processes

Sulfuric acid as a strong acid

- Is a diprotic acid $H_2SO_{4(1)} + H_2O_{(1)} \longrightarrow H_3O^+_{(aq)} + HSO_4^-_{(aq)}$ $K = 10^9$ $HSO_4^-_{(aq)} + H_2O_{(1)} \Longrightarrow H_3O^+_{(aq)} + SO_4^{2-}_{(aq)}$ $K = 1.2 \times 10^{-2}$
- Is a strong acid due to first reaction
- Does NOT give 2 protons per molecule

Diluting Sulfuric Acid

- Add acid to water, not water to the acid
- If water is added to acid, huge amounts of heat can be produced resulting in the water boiling and splattering

Sulfuric acid as a dehydrating agent

- Will attract water or dehydrate
- When an organic substance is dehydrated it will decompose
- Example sugar
- $C_{12}H_{22}O_{11(s)} \xrightarrow{H_2SO_4(l)} 12C_{(s)} + 11H_2O_{(l)}$
- Can be utilised in laboratories to dry gas mixtures that are being prepared or analysed

Sulfuric acid as an oxidant

- Concentrated H₂SO₄ is a strong OXIDANT
- Can be reduced to either SO₂ or sulfur (S) or H₂S depending on the temperature

 $Zn_{(s)} + 2H_2SO_{4(aq)} \rightarrow ZnSO_{4(aq)} + 2H_2O_{(l)} + SO_{2(g)}$

 $3Zn_{(s)} + 4H_2SO_{4(aq)} \rightarrow 3ZnSO_{4(aq)} + 2H_2O_{(l)} + S_{(s)}$

 $4Zn_{(s)} + 5H_2SO_{4(aq)} \rightarrow 4ZnSO_{4(aq)} + 4H_2O_{(l)} + H_2S_{(g)}$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.